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New progress on

S(E F=N(EF

BY CONSTANTIN P. NICULESCU

This paper is devoted to the following problem posed by A. Grothen-
dieck : 1

Let E and F be two Banach spaces such that every operator from E
into F is nuclear. Is E or F finite dimensional 2

Wo shall show that the answer is yes provided that E or F is of the
type &. ﬂ
Definition. A Banach space E is said to be of the type @ provided that
if every composition ; | ;

(%) > ’CoiE'ilz.{;fo : :

is an absolutely summing operator then E is either finite dimensional or E
contains uniformly the spaces [l.(n) (equivalently, E’ contains uniformly
complemented subspaces F, with sup d(Fh. I,(n)) € ). Here j denotes the
canonical inclusion. ‘ :

The notations and terminology is standard. |

If every composition (*) defines an absolutely summing operator then
there exists an M > 0 so that m{(j-5-T) < M||S||-| T for alb oS el L)
and T € £(c,, E’) and in such a case E’ cannot contain for p =2 or p = <
sequences of uniformly complemented subspaces F, with sup d(Fy, I(n) < 0. ]

Then every Banach space E which contains a sequence of A-complemen- :
ted subspaces E, with d(E, 1,(n)) € » for some p € {1, 2,0} is of the
type @. According to the main result in [3] and Prop. 2.6 in [5] it follows
that every Banach space E whose dual is complemented in a Banach lat-
tice (E has local unconditional structure in the sense of Gordon and Lewis)
is also of the type G ‘ '
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Anale

: RE.\IABI{.'Let E be a Banach space. Then every operator T € £(E’, [,)
is the pointwise limit of a net S; with S,e&(l,, E) and IS < [T
Moreover

7 (T) =-lim =,(Sy).
Proof. In fact, if {e,}, denotes the canonical basis of I,, we can produce

the operators S, simply by defining S(*) = X < e,, +> T*(e,) for each
finite subset « (C N. - '

Lemma. An infinite Banach space E of the type & centains uniformly
the spaces [.(n) provided that

ér°s°jl)' € HL(ICC: l:c)
for every T e &(E, 1) and S € £, E).
Proof, Notice that
e JoR'oU & [Ti(cor co)

for every U« &(co, B') aud every Ra &), E). In fact, (JeR'eU) = (Ue()s
eRsj" and thus (JeR'eU)"” e TTi(l.., l..). Here @ denotes the canonical embe-
dding of E into E". By the Closed ‘Graph Theorem we check the existence of
a positive M > 0 such that ]

, =(jsR'U) < MR} U]
for every U e £(e;, E) and e\"ery Re £(l,, E). According to jour Remark
above this implies that :

71(jeSoT) < M S} [ Ti

o

for every T € £(¢o, E’) and every Se £(E’, I,) and our result follows.

We can now prove the following : ’

Theorem A. Let I, F be two infinite Banach spaces’ and let E be of
the type G. : 7

i) If &E, F) = [I(E, F) then E’ contains uniformly the spaces l.(n)
and F is isomorphic to a Hilbert space. . .

ii) If Te&F, E) implies T' e [[,(E’, F’) then E contains uniformly
the spaces /,(n) and F is isomorphic to a Hilbert space. :

We shall prove only ii). First notice the existence of a constant M > 0
such that = (T") < M||T|} for all T e &¥, E). Dvoretzky's theorem on
almost sferical sections of convex bodies asserts that for every ¢ > 0 and
every n€ N there exists a closed subspace G C F of codimension n and an
isomorphism S : [, (n) —» F/G such that ||S]|-|S7Y < 1 + . If Re £(.(n), E)
and o : I - I'/G is the canonical mapping then T ((RoS71)) = m((ReS87e9)")
< MRS eqll € MJR||*|S7Y| and thus

mi(R) = m(ReS71e5)) < my((ReS7))|ISII < M(1 + <)||RIl.

Maten

- Fo
of I, @
above

~Lemm

Th!
T e &(1
for B

-factore
. -spacex

-« Th
the ty
hyperr
finite

Pr

If
Ii(n) -
in cory
not h

If
bert s
F, su
(whicl
1.(n)),

"REF

1.
structu
i ]
Boletin
3.
ces, Isr
4

: ’gheir a

J.

UNIV,

st



“oduce
i each
¢

ormly

I
)
embe-

1wce of

be of
Ly

E f.(n)

D -
Lormay

mooon
0 and
ind an
my, L)
og))

L T SRR, i e

e

Matematicd, fizicd-chimie , P 29

~ For T e £(l,, E) put R, = T/ly(n) and let P, be the canonical projection
of I, onto L,(n)."Then Tz = lim R,oP,(x) for all z €/, and thus our Remark
above implies that m,(T") =lim m((R.oP,)") < M(1 + <)|T|| so that by
Lemma above E contains uniformly the 'spaces lu(n).

Then there exists a constant € > 0 such that =(T) < C||T| for all -

T € &(,(n), F'), ne N. Now choose an onlo mapping ¢ e (I(), F)
for T' a suitable index sct. Then o is absolutely summing and ¢ can be
factored through a Hilbert space. Therefore F is isomorphic to a Hilbert
space. f

Theorem B. Let E and F be two Banach spaces and let E or F be of
the type & If every operator from E into F is absolutely summing and
hypermajorizing (i.e., the adjoint is absolutely summing) then E or F is
finite dimensional. |

Proof. Suppose that E and F are infinite dimensional.

If E is of the type & then, by Theorem A (i) the canonical inclusions
l,(n) — l,(n) can be extendad to operators T, e &(E, F) with sup ||T.l| < o,
in contradiction, with the fact that the canonical inclusion Joili=lis
not hypermgjorizingg Then E and F canpot both be infinite dimensional.

10T iv of the type & then Ly Thesrem A(i)) & is inemorphie to a Hile
bert space and I contains a sequence of uniformly complemented subspaces
F, such that sup d(F lu(n)) < . Then there exists a constant M > 0
(which does not depend of n) such that = (T) < M||T||forevery T & £(ls(n), .
l.(n)), contradiction. .
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